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This is the Crst of a series of papers dealing with numerical solving of certain singular 
boundary value problems of quantum mechanics and quantum field theory by using a 
common computational approach, which is briefly exposed in the Introduction. In the 
main body of the paper one simple problem, which arose in the theory of composite 
hadrons, is investigated in detail. Using this problem as a typical example we formulate 
a method of analytic continuation of the numerical solution defined on the real axis into 
the whole complex plane. 

1. INTRODUCTION 

Many problems of quantum mechanics and quantum field theory may be 
formulated in a form of the following integral equation 

(l.la) 

where U&V), a,(x), fi(h; x, u) are known functions, xi are some real numbers 
(usually xi = 0 for i = l,..., m and xi = co for i = m + l,..., n). The problem 
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consists in finding a relation between the real or complex parameters h for which 
Eq. (1.1) has solutions and in determining the corresponding functions u(x) in 
some domain D of the complex x-plane. Note that usually u(x) satisfies some 
normalization condition. 

In this series of papers we investigate in detail several physically interesting 
examples of the Eq. (1.1) and of a system of similar equations. To numerically 
solve these problems we employ an approach (or a strategy) which is believed to 
be useful in a more general context. Therefore, it is in order to outline in this 
Introduction the main features of our approach to the general problem. In the 
main body of the paper we investigate a highly simplified version of Eq. (1.1) 
which arose in the theory of composite hadrons developed by one of the authors [l]. 
The exact formulation of this problem is given below. 

First we introduce some other physical problems that can be expressed in the 
form of Eq. (1.1) and which will be treated in subsequent papers. Note that some 
equations of a more general type 

can be approximately reduced to the form of Eq. (1. I), provided the kernel K(x, JJ) 
permits the uniformly convergent approximations 

(1.3) 

Keeping here a finite number of terms one arrives at Eq. (1.1). In physical problems 
the most singular part of the kernel K(x, v) can often be approximated by finite 
sums (1.3) and if we solve the corresponding equation (1.1) the remaining kernel 
K - P) can be treated as a perturbation. Examples of using such an approach 
can be found in [2, 3, 51. 

The equations of form (1.1) were also met with in quantum field theory, typical 
examples being the Bethe-Salpeter equation and Dyson-Schwinger equations 
(see, e.g., [5]). In the quark model introduced in [l] the zero-mass-pion Bethe- 
Salpeter wavefunction satisfies the equation 
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where E = f 1, Jl(x) and N,(x) are the Bessel functions of the first and second 
kind, respectively. In the same model the quark self-energy satisfies the nonlinear 
equation 

u(x) = - +j 1 Y1’2J1(Y) x1’2wd JoZ dY uyr) + 9 U(Y) 

(1.5) 

A similar but much simpler equation for the electron self-energy was suggested 
by Johnson et al. [4] in their approach to quantum electrodynamics: 

u(x) =&A spy y”(y)-+X2J?-+gy-J. 
U”(Y) + Y2 

(1.6) 
x 

Very similar equations arise in the now most fashionable nonabelian gauge 
theories. 

The linear problem (1.4) is treated in the present paper, the nonlinear problems 
(1.5) and (1.6) will be treated in the next paper. Now we outline our approach to 
solving these problems. The equation (1.1) is obviously equivalent to the following 
differential boundary value problem 

Vi’(X) = fi (xi x, dx) + g1 4x) V,(x)); Vi(Xi) = 0. (1.7) 

If a,(x) and f,(h; x, u) are not very complicated functions Eq. (1.7) may be more 
convenient for numerical solving. However this is not the case even for Eqs. (l-4)- 
(1.5). Much greater simplification is possible if the functions Q(X) are n times 
differentiable, fi are (n - 1) times differentiable with respect to the variables 
x and u and the Wronskian of ai( W(u,(x), u2(x),..., u,(x)) has no zeros 
in D. 

Then, differentiating Eq. (1. la) (n - 1) times and using the relation V,‘(x) = 
f&h; x, u(x)) for eliminating all derivatives of V, , we arrive at a system of n linear 
equations for n functions Vi , which therefore can be expressed in terms of u(x) 
and (n - 1) derivatives of u(x). Substituting this in the nth derivative of Eq. (l.la) 
obtained by the same method, we thus obtain a certain nth order differential 
equation for u(x) with n boundary conditions Vi(xi) = 0 (where Vi are expressed 
in terms of u and its (n - 1) derivatives). It can be proven that this boundary 
value problem is equivalent to Eq. (1.1) and to Eq. (1.7). 
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We illustrate this general procedure by explicitly writing the boundary value 
problem, corresponding to Eq. (1.1) with n = 2: 

[(u - 240)’ - (aif*)] = 0, (1.8a) 
[(u - UJ - (Qfi)’ - (Ui’fi>] 

det a2 I/ 
tu - uld 

u2’ [(u - uo)’ - @if{)] =C O; II 
det a’ 

II 
tu - UCJ 

a,’ [(u - z&J - (Qfi)] =C OS I/ 
(1.8b) 

Here (a,f,) = a,f,(X; x, u(x)) + a,f,(X; x, u(x)), (a,‘fi) = a,‘f, + a2’f2 , and the 
primes denote the differentiation with respect to x, e.g., f,‘(X; x, u(x)) = 
(af,/Zk) + (af,/iYu) u’(x). The Eq. (1.8a) essentially simplifies if +(x) and a2(x) 
satisfy a differential equation ai - c(x) a,’ - d(x) ai = 0 with some simple func- 
tions c(x) and d(x). It then reads 

(u - UJ - c(x)(u - z&J - d(x)(u - UJ = @if<) + (Ui’fi) - d(X)@rdfi). (1.9) 

Further simplifications occur if g, = g, = g(X, x, u(x)) and (a&) = a,b, + a,b, = 
cl(x), (a$‘&) s a,‘b, + a2’b2 = c2(x), where cl(x) and c2(x) are some simple 
functions of x. Then the right-hand side of Eq. (1.9) is (c:(x) - d(x) cl(x) + c2(x))g. 
Note that we call the functions “simple” if the resulting equation allows convergent 
power series or asymptotic expansion near its singular points and so the questions 
of the existence and uniqueness of the boundary value problem can be answered. 

Our approach to solving the problems of the type (1.1) may be summarized as 
follows. Reduce Eq. (1.1) to the differential boundary value problem (1.8), find 
the singular points of Eq. (1.8a), obtain the asymptotic (or convergent power 
series) expansions near these points, prove (or disprove) the existence of the 
solution of the problem, and investigate the question of its uniqueness. Then, by 
any of available methods find a rough approximation to this solution. A simple 
procedure giving such an approximation consists in writing some trial functions 
V,(x) satisfying boundary conditions Vi(xi) = 0 and depending on some param- 
eters. These functions and the relations between parameters I\ are to be determined 
from the requirement of the minimum error in Eq. (1.7). This procedure usually 
gives a reasonable first approximation and can be iterated. However, more 
ingenuous methods of iteration, such as continuous analog of the Newton method 
[6], usually provide more rapidly convergent approximations and thus they will 
be systematically used in our computations. 

The present paper is organized as follows. In the next section the boundary 
value problem (2.1)-(2.3), corresponding to Eq. (1.4) is considered and solved 
by the JWKB method and the asymptotic expansion of u’(x,,)/u(x,> for large 
values of x,, is obtained. In Section 3 the differential boundary value problem is 
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solved numerically by using the continuous analog of the Newton method. The 
approach used in this section is quite general provided we have reasonable first 
approximations for X and u(x) and for the behavior of u(x) near singular points. 
JWKB method of Section 2 can be helpful for some other linear problems, when 
fi are linear functions of U, however, it is useless in more general context, and the 
numerical methods should generally be used from the very beginning. In Section 4 
the analytic continuation of the numerical solution defined on the real axis is 
performed. We hope that the analytic continuation method employed in this 
section is rather general and can be applied to other similar problems. 

2. THE ASYMPTOTIC METHODS OF SOLVING THE BOUNDARY VALUE PROBLEM 

As has been pointed out, the relativistic bound state problem for the pion 
composed of quarks may be written in the form of Eq. (1.4) or, equivalently, 

~+[1+-&-$- x2 - (l/4) u(x) = 0 
X2 I (2-l) 

u(x) - x1i2Nn(x), 
x-m 

where E = fl, N,(x) is the Bessel function of the second kind and for the pion 
problem X = 1. The bound state function satisfies the normalization condition 

1 s m 8,rr2 
0 

[ 44 
x2 + p2 

1 2dx = 1. 

In this section we use the standard asymptotic methods to solve the problem 
(2.1)-(2.4): 

I. The JWKB method is used to obtain the approximate eigenvalues f&) 
and eigenfunctions u,(x). 

II. The asymptotic expansion in powers of x-l is used to find the solutions 
of Eq. (2.1) for large x. On this basis the boundary condition at some finite point 
xmax E [0, co) is obtained and then used for realization of the numerical method 
in Section 3. 

Without loss of generality, we take h = 1 and E = -1. The generalization to 
an arbitrary h and (or) E = +l is straightforward and is discussed at the end of 
this section. For p = 0 the exact solution of Eq. (2.1) satisfying the boundary 
condition (2.2) is easily found to be 

u(x) = const x1f2JV(x), (2.5) 
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where v = (1 + f) 1/2, and J,,(X) is the Bessel function of the first kind. Comparing 
(2.5) with the asymptotic expansion of N,(X) for x + co and using the normaliza- 
tion condition (2.4) we obtain eigenvalues and normalized eigenfunctions of the 
problem (2.1)-(2.4) for C.L = 0: 

fnc-m = MN + 21, (2.6) 

U,(-)(X) = 47T[2(N + l)(N + 2)]l” x112JN+I(x). (2.7) 

Here n = 0, 1, 2 ,..., N = 2n + 1 = 1, 3, 5,... and by fn&l and w&) we 
denote the eigenvalues and the eigenfunctions of the eigenvalue problem (2.1)-(2.4) 
corresponding to E = f 1, respectively. The exact solution (2.5) is used later to 
check the accuracy of different analytic and difference approximations to the 
boundary value problem (2.1)-(2.4). 

Consider now the problem I, i.e., the application of the JWKB method to 
Eq. (2.1), which resembles the nonrelativistic radial Schrbdinger equation with 
the potential V(x) = f(x2 + p2)-’ and h = I + 4. To perform the correct transition 
to a JWKB-type equation [7] it is necessary to use the generalized Langer trans- 
formation [8] or, equivalently, the simple Kramers change [9]: A2 - ) + h2. In 
so doing, we make the JWKB solutions have the correct behavior at the singular 
points of Eq. (2.1). Equation (2.1) on the real axis has one regular singular point 
x = 0, one irregular singular point x = cc and one turning point x1 . The JWKB 
solutions are of the standard form [7]: 

44 = (WI ~(4lY3 ~0s /j-‘p(t) dt - (r/4)/, x1 < x < co, (2.9) 
Xl 

where B = const and 

Xl = [{(l/4)($ - f - 1)” + /.S}l/2 - (l/2)($ -f - l)]‘“, 

P(X) = 11 - cfl(x” + p2>) - ulx2>11’z. 

The JWKB eigenvalue condition is easily derived from the boundary condition 
(2.3). Noting that the behavior of the JWKB solution (2.9) for x + co is 

44 pm sin[x - W cl> + (n/4)1, (2.10) 

where 
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and comparing (2.10) with the known asymptotic behavior of N,(X) for x + oc), 
we obtain the JWKB eigenvalue condition 

CCL CL) = (n + lb-, n = 0, 1) 2 )... . (2.11) 

For p = 0 the JWKB eigenvalue condition gives the exact result. Noting that 

we find C(f, 0) = (f + 1)(~/2), and from Eq. (2.11) it follows that f$‘!‘!“(O) = 
N(N + 2), N = 2n + 1, which coincides with Eq. (2.6). 

In the general case 0 < p < co C(f, CL) can be expressed in terms of the elliptic 
integrals: 

C(f, j-4 = - ((a + 4/(u - W) %/2, q) + (a - Wz W-/2, s) 

+ (/-WW - W2>Kb - 4 17(42, b/a, q) + @7/2,q)l, (2.12) 
where 

a = &(a” + 4/9)1/2 - gc% = x1 ; b = -+(a” + 4p2)1/2 - &a; 
c = +; a = 11.2 -,f- 1; q = ((b - ~)/(a - c))“‘“; 

and F, E, and 17 are the elliptic integrals of the first, the second, and the third 
kind, respectively (as defined in [IO, 111). 

Using Eqs. (2.11) and (2.12) we can find the asymptotic expansions of the 
eigenvalues for p --f 0, co. Omitting rather lengthy calculations we quote here 
only the final result 

p-o:f;~B(p)=N(N+2)+gN(;y;)2$ 1 + ***, (2.13) 

p+ axf$ky”(p) = 2Np - (N2/2) + ... , 

where N = 2n + 1. = 1, 3, 5 ,... . 

(2.14) 

To check the accuracy of the JWKB method it is helpful to consider Eq. (2.1) 
with h = +. In this case Eq. (2.1) can be reduced to the spheroidal differential 
equation which has been extensively studied [12]. The solutions of the following 
eigenvalue problem 

(d2W2) + 1~’ - (.#Kz” + 1))1+> = 0, 
44 ,yo z; 4~) ,ya sink4 

(2.15) 

are known: 
u,(z) = A,(z2 + 1)“2 #(CL, z). (2.16) 
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Here n = 1, 2, 3,...; N = 2~2, A, are the normalization constants and R$&, z) 
are the spheroidal functions (see [12] for definitions and useful relations). The 
eigenvalues fn(&) have the following asymptotic expansions [ 121: 

~~o:fn(ll)=N(N+1)+anC12+..., (2.17) 

p -+ afn(p) = 2Ny. - (N2/2) + ... , (2.18) 

where a, = 4/7, a2 = 40177, a, = 28155 ,... . On the other hand, we can solve 
the eigenvalue problem (2.15) by the JWKB method, which gives the following 
asymptotic expansions for the eigenvalues: 

p + ~:f;~~“(p) = N(N + 1) + p N(N+ 1) 
2 N(N+1)+(1/4)+- (2.19) 

/i -+ co: fP”“(p) = ~N/L - (N2/2) + ..- , (2.20) 

where N = 2n = 2, 4, 6 ,... . Comparing (2.17) and (2.18) with (2.19) and (2.20) 
we conclude that the JWKB method provides quite a reasonable accuracy for 
the eigenvalue problem (2.15). The leading terms of Eqs. (2.17), (2.18) and of 
Eqs. (2.19), (2.20) coincide, the difference between the next to the leading terms 
is rather small. This comparison gives a support to using the JWKB method for 
treating the problems of real physical importance, such as the pion equation (2. I)- 
(2.3) with h = 1. 

The case E = +1 can be treated in the same way. The JWKB eigenvalue condi- 
tion is of the same form (2.1 I), (2.12) as before, the only difference being in the 
definitions of the parameters: 

a = &(a2 + 4p2)V2 - $3 = x1 ; b = -9; 

c = -Ka2 + 4tL2)v2 - iE; a=$+f-1; q = ((b - c)/(a - c))~/~. 

The asymptotic expansions of the eigenvalues of problem (2.1)-(2.3) for E = +I, 
h = 1 and p -+ co are as follows: 

p + co: f :7+7”(p) = 2Np + (N2/2) + ... , (2.21) 

where N = 2n + 1 = 1, 3, 5 ,... . Note that in the case E = +l all eigenvalue 
curves fn(r-l> go out of the same point f = 1, i.e., f,(O) = 1, n = 0, 1,2 ,... . Hence 
for an arbitrary fixed f > 1 the number of eigenvalues pn(f) is infinite, contrary 
to the case E = -1, for which this number is always finite. 

The JWKB eigenvalue condition (2.1 l), (2.12) is convenient for numerical 
calculation of the eigenvalues f’““” n(+j (p) for any desired t.~ E [0, co]. The numerical 
results are shown in Fig. 1 and in Table I for the “ground state” fAyy(ll>, X = 1 
and in Fig. 2 for n = 0, 1,2; X = 1. The asymptotic expansions of eigenvalues 
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for p -+ co (see Eqs. (2.14) and (2.21)) are very useful as the first approximations 
since they are close enough to fntkt) lWKB&) for values of p being not too small. For 
instance, if p > 5 the difference between 2~ - 3 and f$“&) (see Fig. 1) is less 
than 3 %. 

FIG. 1. Eigenvalues fo(+)Q for X = 1. The solid (dashed) lines correspond to c = -l(+l). 

TABLE I 

Eigenvalues fo(&) Obtained by using the Continuous Analog of the Newton Method and the 
JWKB Method 

Ah 
\ 

foe-,Q foc40 foe-)Q fowol) fo(+)W foe-, JwKB fEE”O 
P x = 0.5 x = 1.0 x = 1.5 h = 2.0 h = 1.0 x = 1.0 h = 1.0 

3.0 5.59 6.07 6.67 7.36 6.65 6.03 6.69 
3.5 6.53 6.93 7.46 8.08 7.63 6.92 7.66 
4.0 7.50 7.83 8.29 8.85 8.62 7.84 8.65 
4.5 8.48 8.77 9.17 9.67 9.61 8.79 9.64 
5.0 9.48 9.72 10.07 10.52 10.60 9.75 10.63 
5.5 10.48 10.69 11.00 11.40 11.59 10.72 11.62 
6.0 11.49 11.66 11.94 12.30 12.59 11.70 12.61 
6.5 12.48 12.65 12.89 13.22 13.58 12.67 13.60 
7.0 14.48 13.63 13.85 14.14 14.57 13.66 14.60 

In conclusion of this discussion we remind the main advantages of the JWKB 
method: its simplicity, the wide range of applicability and reasonable accuracy 
at least for calculating the eigenvalues. Unfortunately, the quantitative estimation 
of this accuracy is rather a delicate problem [13]. The worst feature of the method 
is that the JWKB functions have the singularity at the turning points, while the 
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exact solutions are continuous. To overcome this difficulty and to improve the 
accuracy of the JWKB approximation the Langer comparison equation method 
should be used [14]. Here we do not use it as the standard JWKB method is 
reasonably accurate, being applied to the boundary value problem (2.1)-(2.3) 
(for comparison with the numerical solutions, see Section 3). 

FIG. 2. Eigenvalues f&j(&) (n = 0, 1, 2) for X = 1. See also the caption to Fig. 1. 

Now we turn to the problem II. The formal asymptotic solution of Eq. (2.1) 
satisfying the boundary condition (2.3) for x -+ co are 

/Al u(x) N sin f C -C$ + cos 5 C - .p+1 ' (2.22) 
9%=0 7kO 

du(4 x-cosf C $-sin5 C Aa 
n=o Tl=O 

X2n+l’ 

where 4 = x - (377/4) and 

(2.23) 

%I 
‘=a 

n - m - 1) A-1 ; p-1 = 0; n = 0, 1) 2 )...) 
(2.24) 

Bn’ = P, + 2nch . 
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The coefficients (II, and rBn satisfy the recurrence relations: 

010 = 1, 

2(2n + l)pn = -[2n(2n + 1) - $01, +& (-$)i CY+-i, (2.25) 
i=O 

wn + 2) %+1 = [On + 2P + 1) - PI j-L - f i (- p2y /L-i 
i=O 

and can be easily found for arbitrary p and f with the help of a computer. Using 
the asymptotic expansions (2.22), (2.23) it is possible to find the boundary condi- 
tion at some distant point x = x max or, equivalently, to present the logarithmic 
derivative of u(x) in the following form: 

u’(x) = ctg tmax c2, (%‘/X&x) - c2, (,B,‘/x&g) 
u(x) z=2max x2, wx~ax) + ctg 5,, cz, (W&g - (2.26) 

The magnitude of no is determined by the asymptotic nature of the series in (2.22), 
(2.23), and (2.26) [22]. 

The main results of this section (the JWKB eigenvalues and their asymptotic 
expansions for p--+ 0, co, the boundary condition at a finite point) interesting by 
themselves will be used in the next section as a basis for application of the numerical 
methods, which allow one to improve the accuracy of solving the eigenvalue 
problem (2.1)-(2.4). 

3. THE NUMERICAL METHOD OF SOLVING THE EIGENVALUE PROBLEM 

If any two parameters, e.g., X and p, are fixed, the boundary value problem 
(2.1)-(2.4) may be regarded as an eigenvalue problem for the third parameter, e.g., 
f =f(h, p). Varying the parameters h and p in some ranges we can determine the 
functionf = f(h, CL). In such a formulation our problem resembles that considered 
by Peek [15], the only difference is that for our problem (2.1~(2.4) the period of 
asymptotic oscillations does not depend on the eigenvaluef. 

The numerical solution of the eigenvalue problem is obtained by using the 
continuous analog of the Newton method (the program SLIP1 for computer is 
given in [16]). This method has several important advantages over the other 
methods. It allows one to use effectively all available information on the behavior 
of the solutions and to calculate simultaneously the eigenvalue f and the corre- 
sponding eigenfunction u(x) of the problem as a single unknown variable 
w = [f, u(x)] of a certain nonlinear functional equation p(w) = 0 [6]. It should 
also be mentioned that the calculation procedure is stable. 
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Consider now some characteristic features of numerical solving of the problem 
(2. I)-(2.4). 

To perform the calculations we replace the interval 0 < x < cc by the finite 
interval 0 < x < xmax , where xmax is sufficiently large. To exclude from the 
consideration the unknown asymptotic constant in the condition (2.3) we formu- 
late the boundary condition at the point x = x max in the form of the condition 
for the logarithmic derivative (2.26). 

The eigenvalue problem (2. l), (2.2), (2.26) on the finite interval is supplemented 
with the normalization condition (2.4) for the wavefunction, which follows from the 
physical context of the problem [l] (the Bethe-Salpeter equation). The normaliza- 
tion condition is significant for the realization of the continuous analog of the 
Newton method [6]. In the calculation procedure used here the normalization 
condition (2.4) is approximated by the condition 

1 
-1 

%x%x 
87r2 ,, 

[u(x)/(x” + p2)]2 dx = 1. (3.1) 

The desired accuracy has been achieved, the wavefunction must be renormalized 
according to the condition: 

x;y)p2 1” dx + D2 I=,,. [ ;$; ;A ] 2 dx/ = 1. (3.2) 

Here u,(f, x) is the asymptotic expression for the wave function (2.22) and the 
constant D is defined as 

u(xm& = Dua(f, x*&x). (3.3) 

For the differential operator it uses the three point finite-difference approximation 
with the accuracy of the order O(P), h being the step of the difference scheme. 
According to Ref. [17], it is natural to expect that the accuracy of the result should 
also be of the second order in h. Substituting the approximate expressions into 
the finite-difference operator, we can take the maximum of the resulting error 6 
as a measure of the accuracy of our results for eigenvalues and eigenfunctions. 

The determination of the optimum values of the parameters xmax and h as well 
as the number of the terms in Eq. (2.26), providing the required accuracy, was 
performed experimentally for a particular case of the problem (2.1)-(2.4) namely, 
for h = I and p = 0, when the corresponding boundary value problem has the 
exact solution (2.6), (2.7). The control calculations were performed with different 
values of parameters xmax and h and with different numbers of terms in the bound- 
ary condition expansion (2.26). The results are presented in Table II. In Case I 
we used only the leading term in the expansion (2.22), while in Case II the three 
first terms were taken into account (NX-~ included). This table shows that the 

58112212-3 
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accuracy of our calculation depends weakly on the magnitude of xmax . For 
example, the accuracy of the results for xmax = 31 and Xmax = 40, when h = 0.025, 
is of the same order. One may also conclude that the approximation of the exact 
boundary condition (2.3) by the finite interval boundary condition (2.26) is 
sufficiently good. Moreover, the observed error of calculation depends on the 
step of difference scheme as A2. This makes it possible to conclude that the 
difference network with Xmax = 20 and h = 0.0125 gives the relative error of the 
results -0.005. During the calculation the accuracy control was performed for 
some values of h and TV by the variation of the parameters of the difference scheme. 
Some results are given in Tables III and IV, which show that the relative error 
for the eigenvalues f as well as for eigenfunctions u(x) is less than 0.005. The 
numerical results for the “ground” state fo(+)(~) for different h and TV (in the 
physically most interesting range of variation of parameter p) are listed in Table I. 
The normalized eigenfunctions u,(*)(x) are given in Fig. 3. 

TABLE II 

The Dependence of the Eigenvalue Jo(-)(O) and the Error 6 on Xmax, h and the Number of Terms 
in Boundary Condition (2.26) 

Parameters 
of the 

difference 
scheme 

Xmax = 20 Xm*x = 31 Xmsx = 40 Xmax = 80 
h = 0.0125 h = 0.025 h = 0.025 h = 0.050 

Case I 3.00035 1.7 * lo-’ 3.00164 2.2. lo-’ 3.00248 2.2 * IO-’ 3.02164 2.0. lo-’ 
Case II 3.00031 1.8. lo-’ 3.00158 2.5. lo-’ 3.00242 3.4 * lo-’ 3.02133 2.1 * lo-’ 

TABLE III 
Convergence of fd(-j(p) with Varying xmsx and h 

XIW3.X h 

40 0.0250 
32 0.0200 
20 0.0125 

fodl) foe-0) 

6.264 9.487 
6.263 9.486 
6.261 9.482 

For the numerical realization of the continuous analog of the Newton method 
it is important to take into account that the convergence of the process of successive 
iterations depends on the choice of the initial approximations to the eigenvalues 
and the eigenfunctions. Using the JWKB method, we obtained a sufficiently good 
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approximation to the eigenvalue f in the whole range of variation of X and II. 
The practice of calculation shows that the asymptotic JWKB expansions of 
eigenvalues for p ---f 0, cc (see, for example, (2.13) (2.14), and (2.21)) can be used 
as very effective initial approximations for the continuous analog of the Newton 
method to be realized on computers. The computation time on CDC-6200 for 
one variant is about 70 sec. 

TABLE IV 

Convergence of Q+)(X) with Varying xmsx and h 

~Oc-)(X), 

\ 

Xmax , 
Xi h. 

2 
4 
6 
8 

10 
12 
14 
18 

6 

W-)(X) W-)(X) 
x,,,,,x = 32 Xmax = 20 

h = 0.0200 h = 0.0125 

12.75 12.76 
87.48 87.56 
75.72 75.76 

-78.19 -78.27 
-35.97 -35.97 

95.65 95.72 
-28.25 -28.29 

82.63 82.70 

2.5 . 1O-6 3.6. IO-” 

FIG. 3. Eigenfunctions Q(*)(X) for X = 1. See also the caption to Fig. 1. 

The Table I shows that the difference between the numerical value of f&p) 
obtained by the continuous analog of the Newton method and the corresponding 
JWKB eigenvalues (2.11) and (2.12), calculated on the computer, is about 1% 
(such difference is practically indistinguishable in the scale of Figs. 1 and 2). 
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4. THE ANALYTIC CONTINUATION OF THE NUMERICAL SOLUTIONS. 
THE CALCULATION OF THE QUARK-PION COUPLING CONSTANT 

In the preceding sections the asymptotic (JWKB) and the numerical solutions 
of the boundary value problem (2.1)-(2.4) have been obtained on the interval 
0 < x < co. Now we turn to the problem of analytic continuation of this solutions 
into the whole complex plane of the independent variable X. This problem is 
well-posed one in the sense of Hadamard-Tikhonov [18]. In connection with this 
problem we will consider the following questions: 

1. The application of the Frobenius method [I91 to the Eq. (2.1) allowing 
one to construct linearly independent solutions in the form of power series con- 
verging within the circle 1 x 1 < II. By identifying the power series solution with 
the numerical one on the interval 0 < x < CL, we thus perform an approximate 
analytic continuation of the numerical solution into the circle j x I < p. 

TI. The calculation of the eigenfunctions of the boundary value problem 
(2.1)-(2.4) at the points x = & by using some asymptotic method of solving 
the difference equation for the coefficients of the power series expansions. 

111. The analytic continuation of solutions defined as power series outside 
the circle of convergence of these series. The determination of the asymptotic 
expansions of the eigenfunctions for 1 x I > p. 

To simplify the treatment of these problems we first make, in the equation (2.1) 
the following change of variables 

u(x) = x-l’“v(x); z = -x2//2. (4.1) 

Here TV # 0; for p = 0 there exists the exact solution (2.6), (2.7). Then the function 
u(z) satisfies the equation: 

& v(z) = 0. (4.2) 

The singular points of Eq. (2.1): x = 0, &ip, cc then transform to the singular 
points of Eq. (4.2): z = 0, 1, co, and our problem is to perform the analytic 
continuation of the numerical solutions into the domains I z I < 1, I z j > 1 and 
to calculate u(l). 

The solution of Eq. (4.2) in the form of a power series, which is absolutely and 
uniformly convergent in the circle j z I -=c 1 and satisfies the boundary condition 
(2.2), is as follows [19]: 
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Here N(f, p) is the normalization constant which can be determined by equating 
u(z) to the numerical solution, obtained in Section 3, and the coefficients C(n) 
satisfy the recurrence relations: 

(n + 2)(n + 1) C(n + 2) - [(n + l)n + (a - b)l C(n + 1) + S(n) = 0, (4.4) 

C(I) = 1; C(0) = 0; n = 0, 1, 2 ,..., (4.5) 

where a = 1~~ and b = -&f. Then our problem is essentially the calculation of 
the normalization constant N(f, PI> for different values of p. With this aim we 
divide the interval [ - 1,0] by k points zi , 0 < i < k and in each of these points 
find the ratio: 

WI4 Zi) = fJ nnm(zi)/~l C(n) ZP. (4.6) 

The function Pm(z) is related to the numerical solution u(x) obtained in Section 3 
by Eq. (4.1) and at each point zi it is defined up to a certain error depending on the 
accuracy of the numerical method. The sum of the convergent power series in 
Eq. (4.6) can obviously be found with any desired accuracy. By calculating N&, zi) 
for different i it is easy to determine the mean value of the normalization constant 
m(p) and the dispersion (T(JL): 

@> = (l/k) 5 NP, zih 
i=l 

(4.7) 

As a typical example we present here in more detail the results, obtained for the 
eigenfunction u,(-)(x) (corresponding to the eigenvalue Jo&)) for h = 1 and 
p = 3. Dividing the interval (-1, 0) by the points zi = -i2/36 (xi = i/2), 
i = 1, 2, 3,4, 5, and calculating the power series at these points with the relative 
error <1O-6 we obtain R(3) = 288.89 and a(3) = 3 . 10-5. For all values of p, 
for which the calculations were made, we obtained u < 10-4, that is quite satis- 
factory. In such a way we can a posteriori estimate the accuracy of the numerical 
method used in Section 3 and obtain the function N(p), which is important for 
physical applications. The normalization constant N(p) being known, the power 
series expansion (4.3) provides the analytic continuation of the numerical solution 
of the boundary value problem (2.1)-(2.4) defined on the interval (-1,O) into 
thedomainlzj ~1. 

Consider now the problem II. Using the recurrence relations (4.4) and (4.5) 
it is easy to show that the series (4.3) converges absolutely for 1 z 1 = 1, performing 
in this way the analytic continuation of the solution on the circle 1 z 1 = 1. The 
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function u(z) for z = 1 is finite and can be calculated by using the power series 
expansion 

41) = WP) f w. (4.8) 
TZ=l 

Unfortunately, this series converges rather slowly, as C(n) -,,+,,, n-2. Therefore 
we employ here another, asymptotic method of calculation of v(l), which rapidly 
gives quite accurate results. 

The second-order linear difference equation (4.4) has two independent solutions 
C,(n) and C,(n) which for n -+ cc can be represented in the form of the asymptotic 
series: 

G(n) nym$ [l + : + f$ + -*], 
Cd4 - l n-m n! (n + l)! [l + 5 + 2 + . ..I. 

(4.9) 

The general solution of the difference equation (4.4) can be written as the linear 
combination of these two independent solutions [20]: 

W) = AU PI C,(n) + BU PFL) G(n), (4.10) 

and the coefficients A and B can, in principle, be determined from the boundary 
conditions (4.5). 

To formulate the effective method for calculating the sum in (4.8) we rewrite 
the recurrence relations (4.4) in a more convenient form: 

(n + 2)(n + 1) C(n + 2) - (a - b) C(n) + b i C(k) = 0. 
k=l 

(4.11) 

Substituting the general solution (4.10) into Eq. (4.11) and taking the limit n -+ cc 
we immediately obtain: 

m 

2 W) = ---AU d/b. (4.12) 
k=l 

This shows that the solution C,(n) does not contribute to the sum defining v(l) 
and so the calculation of v(l) is reduced to the determination of the asymptotic 
normalization constant A(f, p). 

In the subsequent calculations we choose a finite but large enough value of n 
(say, n = 8) and use the obvious fact that the asymptotic expansions for C(n) 
and C,(n) are equivalent (see (4.9) and (4.10)) [4, 221. Thus, the asymptotic nor- 
malization constant is defined by 

(4.13) 
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where CeX may be easily found from the recurrence relations (4.4) by using the 
initial conditions (4.5), and P is defined by the asymptotic series: 

CM(n) - c (a,q”/n”+2); ao= 1. (4.14) 
k=O 

Our problem is now to calculate the function C(n) by using the asymptotic series 
(4.14) and to estimate the accuracy of these calculations. To this end, we first 
transform the recurrence relations (4.4) into the recurrence relations for the 
coefficients c+ . It is not difficult to find the expansions of C(n f 1) in powers of 
n-l: 

(4.15) 

This may be done by expressing /3p’ in terms of 01~ according to the Biirmann 
theorem [21]. Omitting the trivial algebra, we write the result 

k+l 

pi*’ = c (Fl)“-i+l c;+,c&, , 
i=O 

where Cmi = m!/i!(m - i)! are the binomial coefficients. Substituting (4.14), 
(4.15), and (4.16) into the recurrence relations (4.4) and performing simple but 
tedious manipulations we finally obtain the recurrence relations for (Y~ : 

(k + 1) ‘%+I - b + (k + ‘):k + 2’] 01~ - z aiAki = 0. (4.17) 

Here Aki can be expressed simply in terms of the binomial coefficients: 

Aki = (-l)“-l ci+, + aci+,:. (4.18) 

Using the recurrence relations (4.17) one can successively found any desired 
number of the coefficients 01~ . By using Eq. (4.17) it is not difficult to show that 
ai -i+co i!. For this reason the term OI&Z~+~ as a function of k for n fixed has a 
minimum at k = k,(n). The maximum accuracy will be achieved [22] if we restrict 
the summation in the infinite asymptotic series (4.14) to the following finite sum: 

k&d 

P(n) = c & . 
k=O 

(4.19) 

The absolute error of this calculation is proportional to the magnitude of the 
term corresponding to k = k,(n), i.e., AC(n) N ak0/nko+2. The relative error 
v(n) = dC(n)/C(n) rapidly decreases with increasing n and for any tied n may 
be easily estimated. As a typical example we present here the relative error F(n) 
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of the calculation of the sums (4.14), (4.19) in the case of h = 1, .Z = - 1, ~1 = 3.0, 
andf = 6.073 for different 12. The results are: k,(4) = 6, ~(4) = 8.18 %; k,,(5) = 9, 
y(5) = 1.91 %; k,(6) = 14, ~(6) = 0.27%. 

The numerical calculations were performed by summing the slowly convergent 
series (4.8), (4.4), (4.5) on the computer CDC-6200 (lo4 terms of the series (4.8)) 
and, alternatively, by using the asymptotic method with the help of the mini- 
computer IME-86-S (less than 10 terms of the series (4.19)). The results are listed 
in Table V. In the physical problem, which has been reduced to the boundary 
value problem (2.1)-(2.4), the main quantities are the vertex function of the pion 
composed of a quark and antiquark: 

T(x) = x-3&4(x) (4.20) 

and the coupling constant of the pion 

‘Y(P) = t~2(x)/4.rr)le*,-~, = & [U(l)/P2]2. (4.21) 

Thus, bearing in mind the physical applications [l], in Table V we present our 
numerical results in terms of the coupling constant g(p) for h = 1, E = - 1, 
TV = 2.5; 3.0; 3.5; 4.0. (i.e., for eigenfunction u,c-I(&), see Sections 2 and 3). 

TABLE V 

The Pion Coupling Constant g(p) and the Relative Error rlg(p)/g(p) 
of the Asymptotic Method for Different Values of p 

CL 2.5 3.0 3.5 4.0 

go 13.80 32.80 78.40 122.9 
Agig ( %I 0.12 0.55 1.30 0.46 

In conclusion let us briefly discuss the problem III. The continuation of the 
solutions, defined by the power series, outside the circle of convergence can be 
performed by using a bilinear transformation [19, 231 of the independent variable 

t = z/e + P), (4.22) 

where the parameter p is to be chosen in each case so as to optimize the con- 
vergence of the resulting series in t. The practical application of this method is 
the subject of [23], where the details of the method are considered and the numerical 
results are presented. The same problem can be solved by the method due to 
Ford [24]. This method has been generalized and essentially completed in [25]. 
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5. SUMMARY AND CONCLUSIONS 

We have investigated in detail the numerical method for solving the problem 
(1.4). We have obtained the numerical solution of this problem by using the 
continuous analog of the Newton method, applied to the equivalent differential 
boundary value problem. The transition to the differential problem was used 
because there was the available routine for its solving and because for differential 
equations it is easy to find the solutions in the form of power series as well as 
sufficiently accurate approximate solutions of the boundary value problems by 
the JWKB method. The JWKB solutions were used as the initial approximations 
for the realization of the continuous analog of the Newton method. 

The comparison of the numerical and the JWKB solutions shows that the JWKB 
method gives good approximations for the eigenvalues even in such a region, 
where the formal conditions of its applicability are not fulfilled. To obtain the 
better JWKB approximations to wave function, more powerful variants of the 
JWKB method must be used (see, for example, papers [14] and reviews [7]). 

The comparison of the numerical solutions with those represented in the form 
of the convergent power series makes it possible to find the analytic continuation 
of U(X) into the whole complex plane. This can be done with the same accuracy 
with which the approximate solutions are known for real x. This result is very 
important for the physical applications 
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